Accurate Computation of Conditional Expectation for Highly Nonlinear Problems
نویسندگان
چکیده
منابع مشابه
Linear-time accurate lattice algorithms for tail conditional expectation
This paper proposes novel lattice algorithms to compute tail conditional expectation of European calls and puts in linear time. We incorporate the technique of prefix-sum into tilting, trinomial, and extrapolation algorithms as well as some syntheses of these algorithms. Furthermore, we introduce fractional-step lattices to help reduce interpolation error in the extrapolation algorithms. We dem...
متن کاملglobal results on some nonlinear partial differential equations for direct and inverse problems
در این رساله به بررسی رفتار جواب های رده ای از معادلات دیفرانسیل با مشتقات جزیی در دامنه های کراندار می پردازیم . این معادلات به فرم نیم-خطی و غیر خطی برای مسایل مستقیم و معکوس مورد مطالعه قرار می گیرند . به ویژه، تاثیر شرایط مختلف فیزیکی را در مساله، نظیر وجود موانع و منابع، پراکندگی و چسبندگی در معادلات موج و گرما بررسی می کنیم و به دنبال شرایطی می گردیم که متضمن وجود سراسری یا عدم وجود سراسر...
CONDITIONAL EXPECTATION IN THE KOPKA'S D-POSETS
The notion of a $D$-poset was introduced in a connection withquantum mechanical models. In this paper, we introduce theconditional expectation of random variables on theK^{o}pka's $D$-Poset and prove the basic properties ofconditional expectation on this structure.
متن کاملConditional Expectation
Let μ and λ be two positive bounded measures on the same meaurable space (Ω,F). We call μ and λ equivalent, and write μ ≡ λ, if they have the same null sets— so, if they were probability measures, the notion of “a.s.” would be the same for both. More generally, we call λ absolutely continuous (AC) w.r.t. μ, and write λ μ, if μ(A) = 0 implies λ(A) = 0, i.e., if every μ-null set is also λ-null. W...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: SIAM/ASA Journal on Uncertainty Quantification
سال: 2019
ISSN: 2166-2525
DOI: 10.1137/18m1196674